
CLOSED FORM SOLUTION FOR MINIMUM NORM

MODEL-VALIDATING UNCERTAINTY

Kyong Been Lim

Guidance & Control Branch, Flight Dynamics & Control Division

NASA Langley Research Center, MS 161

Hampton, VA 23681-0001

k.b.lim@larc.nasa.gov

Abstract
A methodology in which structured uncertainty mod-

els are directly constructed frommeasurement data for use
in robust control design of multivariable systems is pro-
posed. The formulation allows a general linear fractional
transformation uncertainty structure connections with re-
spect to a given nominal model. Existence conditions are
given, and under mild assumptions, a closed-form expres-
sion for the smallest norm structured uncertainty that val-
idates the model is given. The uncertainty bound compu-
tation is simple and is formulated for both open and closed
loop systems.

1. Introduction
Currently available system identi�cation (ID) tech-

niques are well-developed under ideal conditions of �nite
dimensionality and linear, time-invariant (LTI) system as
given in references such as [1, 2]. \Robust" control under
this ideal case amounts to a classical sensitivity reduc-
tion (or disturbance rejection) problem due to unknown
but bounded disturbance. Possible exceptions for intro-
ducing model uncertainty for LTI system is during model
reduction for lower order controller design (for example
[3, 4, 5]), or when the quality and quantity of measure-
ment data available are in question.

For many situations in engineering a �nite dimen-
sional LTI system is only an approximation of a true plant.
There is no need to justify the frequent occurrence of the
above discrepencies which are possibly due to an unknown
combination of physical causes. Often, the need for robust
control arises due to a suspected \corruption" of available
measurement data by the secondary e�ects of nonlinear-
ities and/or time variations for approximately LTI sys-
tems. Although strictly speaking, robust control theory
for nonlinear, time-varying systems should be applied un-
der the above circumstances, it is currently limited. How-
ever, it has been shown that LTI-based robustness theory
can handle a class of slowly time varying and nonlinear un-
certainties or e�ects via conic sector theory [6, 7, 8]. The
hope is that a small set of LTI plants will be su�cient to
encompass these secondary e�ects.

This paper is an attempt to methodically construct re-
alistic uncertainty models directly from input output mea-
surements, to make a body of multivariable robust control
theory work in real applications. It extends the open loop
robust ID result in [9] to a general closed loop setting. In
section 2, we briey describe a the form of the structured
uncertainties typically assumed in robust control analysis
and design and in this paper. The main result is outlined

in section 3, where the input and output residuals about
a nominal model is related to the uncertainties allowed
about the nominal plant in a generic closed loop system
ID setting. Model validation and minimum norm model
validation problems are de�ned. Conditions for the exis-
tence of a model validating solution are given. A closed
form expression for the minimumnorm uncertainty among
all model-validating structured uncertainty is also given.
As a special case, robust identi�cation in the open loop
case is shown in Section 4. Section 5 gives concluding
remarks.

2. Uncertainty Structure
Let the overall structured uncertainty be de�ned by

the block diagonal matrices

� = diag(�1; . . . ;�� ); �j 2 C
mj�nj (1)

and the set of all block diagonal and stable, rational trans-
fer function matrices be given by

D =
�
�(�) 2 RH1 : �j(so) 2 C

mj�nj ; 8so 2 �C+
	

(2)

where � and �C+ denote the number of uncertainty blocks
and the closed right-half plane, respectively [11]. We con-
sider the class of problems where the uncertainty connec-
tions to the nominal and the plant inputs and outputs
are given. The relationship between the plant input and
output can be written as

y = Fu(P;�)u+ ~n (3)

where ~n denotes a noise vector whose spectrum is as-
sumed known and the upper linear fractional transforma-
tion (LFT) is de�ned by

Fu(P;�) = P22 + P21�(I � P11�)�1P12 (4)

and P denotes the augmented plant. Notice that in con-
ventional system ID, only P22 is of interest and � = 0.
The important point is that if P22, i.e., the nominal plant
is known, the rest of the augmented plant can be con-
structed from a priori assumptions on the uncertainty con-
nections based on engineering judgement of the physical
system. The structured uncertainty freedom allows the
envelopment of the scatter or variation in the input out-
put data by a bound on � about the nominal. In the next
section, uncertainty models are used to bound residuals
that remain after a nominal model �t.



3. Closed Loop Robust ID

3.1. Residual Errors
Given a P �� structure and estimated output noise,

~n, the errors

e :=

�
ey
eu

�
=

�
y

u

�
�

�
~y

~u

�
(5)

between the predicted (denoted by~) and measured values
of the plant outputs and inputs can be related directly to
the structured uncertainty. Figure 1 show these errors for
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Figure 1: General block diagram for robust ID

a general closed loop system ID experiment. It is assumed
that the controller, K, and external command, r 2 Rnr ,
are known and the plant inputs, u 2 Rnu, and outputs,
y 2 Rny , are measured. The �ctitious signals have dimen-
sions � 2 Cn� and � 2 Cn� where

n� =

�X
j=1

nj; n� =

�X
j=1

mj (6)

The symbols,Rnu andCn� denote real and complex vector
spaces of dimension nu, and n� respectively. For the case
when external disturbance at the plant input is present,
it can be modeled approximately by adding a �ltered dis-
turbance at the output.

The predicted outputs and inputs are given by�
~y

~u

�
= T (�)

�
r

~n

�
(7)

where

T(�) =

h
(I � Fu(P;�)K)�1Fu(P;�) (I � Fu(P;�)K)�1

(I �KFu(P;�))�1 (I �KFu(P;�))�1K

i
(8)

Note that T represents the four components of trans-
fer matrices that de�ne internal stability of a general
two block feedback system consisting of Fu(P;�) and K.
Since the closed loop ID experiment is internally stable,
the system consisting of Fu(P;�) and K is assumed to be
stable also. This translates to robust stability of (P;K)
with respect to �.

In order to solve for the uncertainty, it will be more
convenient to rewrite matrix T (�) in equation 8 so that

� appears as an argument in an LFT. This useful form
can be summarized as follows:

Lemma 1: �
~y

~u

�
= Fu(R;�)

�
r

~n

�
(9)

where

R =

"
F
l
(P;K) P12(I �KP22)

�1[I K]h
I

K

i
(I � P22K)�1P21 T (0)

#
2

(10)

Proof of Lemma 1: Consider the basic relations:

� = P11� + P12~u (11)

~y = P21� + P22~u+ ~n (12)

~u = K~y + r (13)

� = �� (14)

Equations 11 to 13 can be rearranged to2
4 I 0 �P12

0 (I � P22K) 0

0 0 (I �KP22)

3
5
8<
:

�

~y

~u

9=
;

=

2
4 P11 0 0

P21 P22 I

KP21 I K

3
5
8<
:

�

r

~n

9=
; (15)

Using the partitioned matrix inverse identity the coe�-
cient matrix in the left hand side of equation 15 can be
inverted so that 8<

:
�

~y

~u

9=
; = R

8<
:

�

r

~n

9=
; (16)

Equations 14 and 16 gives 9. 2

T (0) denotes the nominal value of T (�) in equation 8

T (0) =

�
(I � P22K)�1P22 (I � P22K)�1

(I �KP22)
�1 (I �KP22)

�1K

�
(17)

Note that T (0) = Fu(R; 0) corresponds to the four compo-
nent transfer function matrices of the two block nominal
feedback system. Hence, internal stability of the nominal
closed loop system is equivalent to stability of T (0).

Using Lemma 1, the error in equation 5 is written as

e = eo � R21�(I �R11�)�1M12 (18)

where

eo =

�
y

u

�
� T (0)

�
r

~n

�
(19)

M12 = R12

�
r

~n

�
(20)

Note that eo is the residual from nominal �t, i.e., when
� = 0.



3.2. Model Validation
Equation 18 gives the residual error that remains after

a nominal model �t of the available measurement data. In
applications, measurement data are usually discrete and
�nite length in time which will lead to a spectrum (from
spectral sampling theory) at evenly spaced discrete fre-
quencies. The discrete frequencies will be denoted by the
set, 
, where


 = (z1; . . . ; zn!); zi = ej!ih (21)

where h denotes the sampling time. The errors de�ned
in equation 18 are computed at the above frequencies by
taking the discrete Fourier transform of both discrete time
signals and systems.

Model Validation:
Given the time histories, u, y, r, controller, K, and an
augmented plant, P , the model is said to be validated if
there exists � 2 D such that e = 0 for all frequencies 
,
i.e.,

R21�(I �R11�)�1M12 = eo; 8zi 2 
 2 (22)

The above de�nition for model validation requires the
existence of the uncertainty matrix, �, such that the pre-
dicted values match the measurement data. The use of
the uncertainty matrix extends the more traditional view-
point of model validation where the question involves the
matching of a single plant model with measurement data.
If a model validating � exists at a frequency, its magni-
tude is a reection of the �t error of the nominal model
from the given measurement data at that frequency.

A necessary condition for a solution to the model val-
idation problem is if there exists,  2 Cny such that�

I

K

�
 = eo (23)

Of course it is also su�cient if  and � satis�es

 = (I � P22K)�1P21�(I �R11�)�1M12 (24)

Interestingly, the structure of the problem leads to the
fact that a solution  always exists that satis�es equation
23. This fact can be proven as follows. First, equation 23
is written as

 = eyo (25)

K = euo (26)

where

eo :=

�
eyo
euo

�
(27)

Therefore, the existence of a solution,  , to equation 23
reduces to satisfaction of the condition

Keyo = euo (28)

The above condition is always satis�ed since

eu := u� ~u = Key (29)

for any �. Observe that when the output residual is zero,
the input residual also becomes zero. Indeed it is then not

suprising to �nd in the sequal that the model validation
conditions for a closed loop system is similar to an open
loop system.

The closed loop model validation problem reduces to
satisfying the following condition from equations 24 and
25:

eyo = (I �P22K)�1P21�(I �R11�)�1M12; 8zi 2 
 (30)

By assuming that the output sensitivity of the nominal
closed loop transfer function matrix do not have trans-
mission zeros on the unit circle, the above equation can
be simpli�ed to the form

P21�(I �R11�)�1M12 = (I � P22K)eyo ; 8zi 2 
 (31)

Notice that for closed loop robust ID, the nominal model,
P22, inuence both the nominal residual error and the
uncertainty e�ect on model validation on the left hand
side of equation 31.

We formally de�ne the problem of �nding minimum
norm uncertainty that satis�es model validation.

Minimum Norm Model Validation (MNMV):
Given residual errors after the best nominal model �t, eyo ,
for 8zi 2 
, �nd the smallest norm uncertainty ��(�)j� 2
D among the model validating uncertainties that satisfy
Eq.(31). 2

3.3. Solution of MNMV Problem
The algorithm presented here �nds a smallest possible

bound � at each frequency zi 2 
 such that a � 2 D exists
and satis�es equation 31. The optimal value of � would
come from �nding a minimum norm solution to equation
31. In this section, a technique is given which, under some
reasonably mild assumptions, gives the minimal norm so-
lution to Eq.31 without resorting to optimization via non-
linear programming.

Since the determination of minimum norm bound is
independent at each frequency, the underlying frequency
will be �xed for the remainder of this section. Also in this
section, the following assumptions are made:

Assumption 1: n� � ny
Assumption 2: P21 is full rank.
Assumption 3: � satis�es equation 1.
Assumption 4: I �R11� is invertible.

Assumption 1 states that the number of uncertainty
freedoms is at least as large as the number of output chan-
nels. This along with the rank condition in assumption 2
ensures that a model validating uncertainty exists. As-
sumptions 1 and 2 are made for convenience since we only
need to satisfy

(I � P22K)eyo 2 Range(P21) (32)

Physically, this is a requirement that the weighted output
residual from nominal �t must be within the domain of
inuence of the uncertainty freedom as given by the range
space of P21.

Assumption 3 simply is part of the de�nition of struc-
tured uncertainty. The invertibility condition in assump-
tion 4 is equivalent to the well-posedness condition of the
two block loop involvingR11 and �. Since R11 = Fl(P;K)
and � is the structured uncertainty, this assumption is a



necessary condition for robust stability [11] with respect
to structured uncertainty, which is also equivalent to in-
ternal stability of T (�) in equation 8. Since closed loop
stability is necessary for a succesful system ID experiment
and hence robust stability, assumption 4 will likely be sat-
is�ed.

De�ne the singular value decomposition (SVD)

P21 = USV � (33)

where U 2 Cny�ny and V 2 Cn��n� are Hermitian matri-
ces and S 2 Rny�n� is a full rank diagonal matrix due to
assumption 2. Then the Moore-Penrose pseudo-inverse is

P+
21

= V S+U� (34)

where S+ is a diagonal matrix the same size as ST , having
on its diagonal the reciprocals of the diagonal elements of
S. Denote by N the null space of P21. It has dimension
n� � ny and is spanned by the last n� � ny columns of V .
Let

w = P+
21
(I � P22K)eyo (35)

Then a matrix � solves Eq.(31) if and only if

�(I �R11�)�1M12 = w + � (36)

for some � 2 N . The pseudo-inverse solution (when � =
0) corresponds to the condition where the Euclidian norm
of the �ctitious uncertainty signal, �, is minimal. This is
clear from equations 14 and 16 where

� = �(I � R11�)�1M12 (37)

The minimum norm signal is over all uncertainty signals
that validates the given data about the nominal. This
signal should be distinguished from the minimum norm
uncertainty, �.

To �nd � 2 D which satisfy (36), the identity

�(I � R11�)�1 = (I ��R11)
�1� (38)

is used to rearrange the LFT in Eq.(36) to the form

�(M12 +R11(w + �)) = w + � (39)

For simplicity, let

x := M12 + R11(w + �); y := w + � (40)

Note that x and y are functions of �, an arbitrary null
vector of P21, but are otherwise completely determined at
the �xed underlying frequency.

Partition

x = col (x1; . . . ; x� ) ; y = col (y1; . . . ; y� ) (41)

in a conformal manner with respect to the uncertainty
blocks, �1; . . . ;�� as de�ned in equation 2. First observe
that an SVD for � can be built by placing corresponding
matrices from SVD's for each �i along the diagonals of
block diagonal matrices. Thus, ��(�) = maxi ��(�i). Next,
observe that �x = y if and only if �ixi = yi for all
i = 1; . . . ; � . Then note that if �ixi = yi with xi 6= 0,
then

��(�i) = k�ik2 �
kyik2
kxik2

(42)

The following lemma shows that if xi 6= 0, a �i may be
chosen to achieve this lower bound.

Lemma 2:
If u 2 Cm, v 2 Cn, v 6= 0, then there exists A 2 Cm�n

such that Av = u, and ��(A) =
kuk2
kvk2

. 2

Proof of Lemma 2:
The proof is by construction. Choose A in the SVD form

A =
�
u=kuk2 U?u

�
�
�
v=kvk2 V ?v

��
(43)

where � = diag(k1; . . . ; ks; 0; . . . ; 0), k1 � kj, j = 2; . . . ; s.

The matrices U?u and V ?v denote an orthonormal bases
for the orthogonal complement subspaces of u � Cm and
v � Cn, respectively. Then the left hand side of the equa-
tion is

Av =
�
u=kuk2 U?u

�
�

8>>><
>>>:

kvk2
0
...

0

9>>>=
>>>;

(44)

= uk1
kvk2
kuk2

(45)

Therefore if we choose k1 =
kuk2
kvk2

then A satis�es the equa-

tion and the norm ��(A) =
kuk2
kvk2

. 2

The �nal assumption is stated as

Assumption 5: There exists � 2 N so that for each
i, if xi = 0, then yi = 0.

Note that assumption 5 is only necessary for the sin-
gular condition when xi = 0. For each such �, Lemma 2
can be applied to each xi and yi which are nonzero, to �nd
a minimumnorm of �i for which �ixi = yi. If yi = 0 zero
then minimal �i is zero. This demonstrates the following
result:

Proposition:
For each � 2 N , there is a � 2 D with ��(�) � �� which

satis�es equation 31 where �� = maxi
kyik2
kxik2

. 2

The simple technique to bound the uncertainty is to
calculate �� for any � 2 N for which assumption (5) is
satis�ed. The obvious �rst choice to try is � = 0. If
n� = ny, this is the only � 2 N . The exploitation of
the freedom in � is posed as a conventional constrained
optimization problem in [9]. This freedom is investigated
further in [10].

To summarize, the minimumnorm bound for each un-
certainty block can be computed from Eq.(42). For robust
control design application, the minimum bounds can be
overbound by a stable, realizable low-order transfer func-
tions for each uncertainty block such that �(z) 2 RH1.
The linear programming approach [12] can be used to ob-
tain a tight overbound with low-order functions.



4. Open Loop Robust ID
The robust ID from open loop experiments can be

viewed as a special case of closed loop robust ID. By letting
the controller,K be zero, �gure 1 simpli�es to �gure 2. For
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Figure 2: Block diagram for open loop robust ID

the open loop case, u = ~u = r so that eu = 0 and the only
error to consider is in the predicted outputs. Equations
10 and 16 simpli�es to

�
�

~y

�
= R

8<
:

�

r

~n

9=
; (46)

where

R :=

�
R11 R12
R21 R22

�
=

�
P11 [P12 0]

P21 [P22 I]

�
(47)

so that the predicted output is

~y = Fu(R;�)

�
r

~n

�
(48)

The error in the predicted output for open loop is

ey = eyo � P21�(I � P11�)�1P12r (49)

where
eyo = y � P22r � ~n (50)

is the residual after a nominal �t.
The de�nition of model validation for open loop case

is similar to the closed loop case except that u = r, K =
0, and only ey is required to be zero, so that the model
validation condition reduces to

P21�(I � P11�)�1P12r = eyo (51)

The condition in equation 51 has a similar form as the
closed loop equation 31. However, in the open loop ID
case, the nominal residual output error is not premulti-
plied by the output return di�erence, and the output noise
and nominal model, P22, only appears in the residuals in
the nominal �t in the right hand side of equation 51 (cf
31).

In solving the MNMV problem for the open loop case,
the same solution algorithm can be used because equations
31 and 51 have the same form. The only di�erence is
in the physical signi�cance of assumption 4 where it is
su�cient that the true plant needs to be stable which is
necessary for open loop ID. This means that assumption
4 will always be satis�ed in the open loop case.

5. Concluding Remarks
A key assumption is that we can represent the scatter

in the input-output measurements by a set of plants de-
�ned by a linear fractional transformation. Additionally,
an uncertainty structure about the nominal model are ju-
diciously selected by an engineer based on the underlying
physics of the problem. The residuals in the predicted
inputs and outputs are used to generate bounds of struc-
tured uncertainties for each component in the frequency
domain. The simplicity and directness of the calculations
for the uncertainty bounds is encouraging. Recent appli-
cations show reasonable predictions of structured uncer-
tainty bounds for a stable SISO plant [9] in open loop and
for an unstable MIMO plant [13] in closed loop.

References
[1] Ljung, L., System Identi�cation: Theory for the
User, Prentice-Hall, Inc., Englewood Cli�s, New Jersey,
1987.
[2] Juang, J-N., Applied System Identi�cation, Prentice
Hall Inc., Englewood Cli�s, New Jersey, 1994.
[3] Gregory, C.Z., Jr, \Reduction of Large Flexible
Spacecraft Models Using Internal Balancing Theory,"
Journal of Guidance, Control, and Dynamics, Vol.7, No.6,
1984, pp. 725-732.
[4] Gawronski, W., and Williams, T., \Model Reduc-
tion for Flexible Space Structures," Journal of Guidance,
Control, and Dynamics, Vol.14, No.1, 1991, pp. 68-76.
[5] Juang, J-N., and Lew, J.S., \Integration of System
Identi�cation and Robust Controller Designs for Flexible
Structures in Space," 1990 AIAA GNC Conference, Port-
land, Oregon.
[6] Safonov, M.G., Stability and robustness of multivari-
able feedback systems, MIT Press, Cambridge Press, Mas-
sachusetts, 1980, chapter 2.
[7] Zames, G., \On the input-output stability of time-
varying nonlinear feedback systems- Part I," IEEE Trans-
actions on Automatic Control, vol. AC-11, no. 2, pp.228-
238, April 1966.
[8] Waszak, M.R., \A methodology for computing un-
certainty bounds of multivariable systems based on sector
stability theory concepts," NASA Technical Paper 3166,
April, 1992.
[9] Lim, K.B., Balas, G.J., and Anthony, T.C.,
\Minimum-norm model validation identi�cation for ro-
bust control," AIAA Paper No. 96-3717, 1996 AIAA GNC
Conference, San Diego, California.
[10] Lim, K.B.,and Giesy, D.P., \On the directional de-
pendence and null space freedom in uncertainty bound
computation," AIAA Paper No. 97-037, 1997 AIAA GNC
Conference, New Orleans, LA.
[11] Stein, G., and Doyle, J.C., \Beyond singular val-
ues and loop shapes," Journal of Guidance, Control, and
Dynamics, vol.14, No.1, Jan-Feb 91, pp.5-16.
[12] Scheid, R.E., Bayard, D.S., and Yam, Y., \A linear
programming approach to characterizing norm bounded
uncertainty from experimental data," 1991 American
Control Conference, pp. 1956-1958.
[13] Lim, K.B., Cox, D.E., Balas, G.J., and Juang, J-
N., \Validation of an experimentally derived uncertainty
model," AIAA Paper No. 97-0244, 35th Aerospace Sci-
ences Meeting & Exhibit, Reno, NV.


